
Technological Feasibility Report

GeoKings - GeoSTAC

Sponsors - USGS Amy Stamile, USGS Trent Hare, USGS Jason Laura

Andrew Usvat, Zack Bryant, Alexander Poole,
Jackson Brittain, John Cardeccia

CS 476

Dr. Leverington

4/07/2023

Northern Arizona University

Table of Contents

Topic Page

Introduction ………………………………………………………………. 3

Technological Challenges ………………………………………………. 5

Technological Analysis ………………………………………………….. 7

I. Stylizing Vectors……………………………………………………. 7

II. Rendering Vectors ………………………………………………. 15

III. Search Feature ……………………………………………… 21

Technology Integration ………………………………………………… 27

Conclusion ………………………………………………………………… 29

References …………………………………………………………………. 30

2

Introduction

In today's era, digital data discovery has evolved to be completely online, with

users discovering and sometimes analyzing data through various search engines, web

maps, and FTP sites. This includes spatially enabled data that can be located within the

context of a map. Some examples of this are restaurant locations, spatially enabled

tweets, and satellite collected images.

The Astrogeology group of the USGS (United States Geological Survey) stands

at the forefront of planetary data preservation, analysis-ready data delivery, and

planetary data access. One of their focal points is to support community data

exploration and availability. As part of this vision, the USGS has launched a project

called "GeoSTAC," a web-based application that has been created and updated by

preceding NAU capstone groups. GeoSTAC allows the serving of planetary data using

community-developed standards to access Analysis Ready Data (ARD). ARD refers to

data that has been processed through highly sophisticated imaging software, which

significantly reduces the extent of data processing and obviates the necessity for the

community to download large volumes of data for analysis and research purposes. The

primary objective and use of the GeoSTAC application are to implement their focus

areas outlined above by providing ARD to the global planetary science community,

simplifying their research and rendering it more efficient. However, the current version of

GeoSTAC supports only raster data APIs (a grid of values on a map), and not vector

data (specific features on a map), which encodes data into a smaller file and is much

better in regards to scalability, editing, and precision. The current use of raster data

3

API’s results in a limited resolution for the GeoSTAC map and makes data challenging

to modify.

Therefore, the USGS Astrogeology group is seeking a solution from the

GeoKings team to (1) enable their vector data APIs within the GeoSTAC web

application and re-release it with rich support for vector data visualization, discovery,

and download. (2) To enhance the web application with the capability to perform

advanced search operations using the Features API CQL (Common Query Language)

specification, created by Open Geospatial Consortium (OGC) which is specifically

designed for querying spatial data. This specification enables the integration of

geospatial search capabilities with the ElasticSearch backend, allowing users to

efficiently search and filter data based on location-based criteria. (3) To customize the

visual representation of the newly created vector features, the application of Styled

Layer Descriptor (SLD) files is proposed. These files are a set of rules that describe how

to display different features on a map, making it easier to tell them apart from one

another.

In this report, we will examine the feasibility of this project and how it could help

the community in accessing and analyzing spatial data efficiently. In the next section we

analyze the technological challenges of GeoSTAC by going over the high level

requirements of our system. From there, we move on to the “Technology Analysis”

section where we specifically discuss each of our major technological issues as well as

design decisions. Next, we will transition to the “Technology Integration” section which

4

introduces our overall software architecture for our system and how each of the

micro-solutions introduced will come together. Lastly, we outline and summarize

everything that we have covered in this document.

Technological Challenges

The first challenge posed by this project is the rendering of the vector data on the

map. The map is already integrated into the GeoSTAC web application, and it is our job

to make the new vector data render on the map. Leaflet is a JavaScript library for

interactive maps [1] that we are tasked with using. Learning how to effectively leverage

Leaflet is a challenge that is necessary to overcome in order to ensure that the final

product represents our abilities at the highest caliber.

Another challenge that we anticipate is search functionality within the GeoSTAC

web application. Currently, there is a search function already implemented, but as of

right now, it only supports the searching of raster data. The challenge presented to us is

to implement updated searching functionality to support vector data as well.

Familiarizing ourselves with this API will be the most challenging part, which is crucial to

our success.

Stylizing the vector data will be another obstacle to overcome. Once the data is

displayed, making sure that it is shown in an informative way will be the next step in our

process. Stylizing the data will take a high level of comprehension on the topic of SLD

5

files. We will need to be sure that the files are appropriately handled for our project to

succeed.

There will be the challenge of adding a tool to enable users to download specific

features from the displayed web map. Another challenge will be to make sure that the

work that we do is fully documented to the standards outlined by the Open Geospatial

Consortium (OGC). Lastly, updating the user interface of the GeoSTAC web application

to accommodate the additions that we made over the course of our project will be

necessary.

● Key features will include:

○ The ability to render OGC Features API compliant vector data sources in

the GeoSTAC webmap.

○ The ability to search using the OGC Features API Common Query

Language (CQL) specification to the provided ElasticSearch backend.

○ The ability to stylize the vector features using Styled Layer Descriptor

(SLD) files.

● Stretch goals will include:

○ The ability to select and download features from the GeoSTAC web map.

○ Developer focused documentation describing how other developers can

make use of the library and APIs in their web map applications.

○ Updates to the UI as appropriate to support the visualization and

discovery of vector data sets.

6

Technological Analysis

As a team, we have three ultimate tech challenges to research and deploy.

These are Stylizing Vectors, Rendering Vectors, and using ElasticSearch. In order to

understand how these technologies will fit together we did some research in order to

find appropriate plugins or tools in order to keep everything compatible and up to USGS

standard. In this section we will take the time to discover libraries or plugins that can be

used together and are compatible. We will grade the tools and decide on a few to use.

Here is what we found.

I. Stylizing Vectors

Since vectors are now able to be rendered on the map we need a way to be able

to visually distinguish vectors from one another. A user should be able to look at a

vector on a map and gain information about it through visuals alone. In order to give the

user this feature we’ll be implementing vector stylizing. Vector stylizing is the process of

rendering individual vectors with symbols corresponding to the type of feature the vector

is. Such as a canyon vector containing a symbol made of slashes, while lakes are

displayed using a dot symbol.

7

Figure 1.1 Styled black line (top) vs unstyled red line (bottom)

Through stylizing vectors we’re able to gain advantages over plain rendering

which include:

● Being able to use symbols to visually describe vector areas instead of only

colors. The symbols would be assigned to certain geologic features, such

as dotted lines being assigned to canyons, much like a physical map

would have symbols and a legend to help its users to further understand

what the area is like in terms of geography.

● Allows the user to quickly understand data associated with the vector

area. Users won’t have to do an extensive lookup on certain vectors to

understand the vector they are interested in. They would just have to

reference a legend to understand the symbol.

Displaying the stylized vectors is a two part problem which includes using an

appropriate set of symbols and then displaying these symbols. We’ll need two separate

solutions to solve these problems which are:

8

● A package that contains symbols to display on the Leaflet map. This

requires finding or creating a set of symbols in order to show them on a

Leaflet map.

● A program that can then process GeoJSON data through a SLD file to

produce a stylized vector. GeoJSON is a data structure for storing data on

different types of geological features [2].

Since stylizing the vectors is a two part problem that requires two different

technologies for a solution, we’ll cover the first problem which is finding a suitable

symbol set and its possible solutions. Following this we’ll explore the second problem

which is finding a way to display these symbol sets and its possible solutions.

For choosing a package of symbols to use with our program we’ll examine a

certain set of characteristics in order to determine if the package is compatible with

GeoSTAC. These characteristics are as follows:

● Set-up Time: Saving time is important to ensure that the team stays on

track. In order to keep on track the team should make sure that the tools

we are using don’t require more time than they can afford to spend.

● Visual Clarity: Since this map will be used by many to look for and

discover data, it’s important that the symbols are easily visible. This way

users are able to distinguish certain vector features from one another.

9

● Small Size: The size of these files should be deemed to be small enough

to quickly display to the application. Too big of a file size could cause more

loading time ultimately slowing down the GeoSTAC application.

For displaying these symbol sets to the Leaflet map we have two options we’ll

introduce:

● Our first option is called Geologic Symbols, which is a framework that

contains geologic symbols with a SLD to use with various mapping

programs such as Leaflet.

● Our second option would be to use FGDC Geologic Patterns for the Web,

which is a framework mainly composed of symbols that we can use with a

custom made SLD to display these symbols.

The Geologic Symbols package was recommended to us by our sponsors. It’s

composed of a small team and is hosted on GitHub for anyone to freely. This package

provides many different geological symbols in many different file formats including SLD

files. Since the developers have provided many different file types to increase

compatibility with many mapping services, it can be expected that it has been used in

mapping projects. Because the package comes with an SLD file type it can even be

used with Leaflet with some special tweaking.

Another option for using geologic symbols would be to use FGDC Geologic

Patterns for the Web. This was included in the previous GitHub of Geologic Symbols,

10

explaining how it was a similar style of project. There have been a few updates to the

program since its release so it can be assumed the developers are actively supporting

the package. The package contains mainly PNG’s and SVG’s (Scalable Vector

Graphics) of different styles of geologic drawings. SVG’s are images that are able to be

scaled up or down at any resolution without losing quality, unlike other image formats

such as PNG and JPEG [3]. Examples of projects using the tool aren’t readily available

so we will have to experiment to get it to work.

To fully understand what package would be best for our project, we’ll begin to

analyze each package based on the desired characteristics. Once again the desired

characteristics are set up time, visual clarity and small size. We'll begin by first

analyzing Geologic Symbols and how they meet these desired characteristics:

● In terms of being able to use the tool quickly, this package does very well.

The package already has symbols set up with an SLD file. This means we

will not have to spend time creating our own SLD file to use with the

symbol set.

● For visual clarity many of the icons are easily visible and the image quality

doesn’t appear to be compromised. The SVG images are mainly black

and white which would help with contrast on most of our Leaflet maps. If a

map has a lot of black and white, it could be an issue since these symbols

could get lost in the background.

11

● In terms of image file size this package has files that are on average

around 2KB - 4KB large. These file sizes are very small and even with

multiple of them appearing at once shouldn’t slow down the speed at

which the vectors are displayed.

Now we'll take a look at how using FGDC Geologic Patterns for the Web

compares.

● This package doesn't come with an SLD file, so the team would have to

make one. Making an SLD file to use with these symbols will take more

time.

● For visual clarity this package is about the same Geologic Symbols. It

mainly contains black and white images with some red and blue symbols.

The image quality itself seems to be clear and not blurry. And the issues of

possible color overlap with the map is an issue with this package as well.

● The average size of a symbol for this package is around 20KB, which is

still relatively small.

When it comes to choosing a symbol set to use, with Geologic Symbols, we’ll be

able to spend less time on setting it up. It also has good visual clarity, and contains very

small files. With FGDC Geologic Patterns for the Web we’ll have to spend more time

setting it up, but it won’t be a huge impairment, the visual clarity is also good, and the

size of the files are small.

12

After doing some deliberating the team has decided to go with the Geologic Symbols

package. In reference to Table 1.1 Geologic-Symbols either ties or beats FGDC

Geologic Patterns for the Web in every category making Geologic-Symbols the clear

winner. The biggest differences being Geologic Symbols requires less time to get

working and the size of the average file is five times smaller than files in FGDC

Geologic Patterns for the Web.

FGDC Geologic Patterns
for the Web

Geologic-Symbols

Time setup 2 5

Visual clarity 5 5

Size 3 5

Total 10 15

Table 1.1

Now, for displaying these symbols, we need another tool. Due to the nicheness

of the challenge we have, which is processing GeoJSON data with SLD files to display

symbols to a Leaflet map, the available tools are extremely limited. With that said, we

still require the limited tools to be able to meet certain characteristics in order to use it in

our project. These desired characteristics for displaying these symbols are as follows:

● Speed: Using a slow website not only frustrates the user but is a detriment

to their time. For this reason we find it important to use a tool that will not

slow the website's processing time, in order to give the users the best

experience possible.

13

● Compatibility: In order for a tool to properly display stylized vectors it will

need to be compatible with GeoJSON objects and SLD files.

Once again due to the nicheness of our problem there is only one tool readily

available the team has found called “Leaflet.SLD”, which was recommended to us by

our sponsors. The program itself contains a very small codebase and has only one

contributor. Leaflet.SLD is compatible with the current version of Leaflet, which means

the team wouldn't have to worry about fixing any compatibility issues. Once again

finding example projects using Leaflet.SLD is not readily available. Since the program is

a speciality program designed to fix one specific problem, it is not expected to have

seen a lot of use.

Even though there is only one option we’ll begin to analyze Leaflet.SLD to make

sure it suits our project. If the package doesn’t meet the desired characteristics the team

will have to look into making a custom program. We’ll take a look at Leaflet.SLD and

how it fairs in speed and compatibility.

● Leaflet.SLD contains a very small codebase consisting of about 300 lines

of code. It is also written in Javascript which is a relatively fast language.

● SLD files and GeoJSON objects work with Leaflet.SLD by default. Taking

in the GeoJSON object and SLD file, then rendering the styled vector to

the Leaflet map.

14

While Leaflet.SLD is the only readily available option we’ve still found it to be a

highly desirable tool. After the team had looked over the codebase they deemed the

program to be acceptable and didn't contain any signs of slow down. The codebase is

also relatively small meaning the team could easily make any changes to the program in

order to optimize speed. Leaflet.SLD works with GeoJSON and SLD files by default,

meaning that it is perfectly compatible with the GeoSTAC project as is.

Leaflet.SLD

Speed 5/5

Compatibility 5/5

Total 10/10

Table 1.2

Even though Leaflet.SLD is the only available option right now the team has

found it to be an ideal tool for the project. The program scored flawlessly in compatibility

and speed, proving again to be an ideal tool for the team’s project, see Table 1.2. The

process of creating a new program to use with the project is deemed unnecessary and

fruitless after this analysis of Leaflet.SLD.

II. Rendering Vectors

Vector data, a type of geological mapping data, is stored as a collection of

polygons and shapes associated with specific geological features. This is significant

because the current iteration of our web application can only display raster data, which

15

is a rendered image that uses an array of pixels to create a visual representation of the

map. However, raster data does not provide insight into specific features such as

mountain ranges, volcanoes, mineral deposits, and others. Our goal is to update the

web application to support vector data, allowing users to research geological features

on a range of planetary bodies more effectively.

Rendering the data for the web application will be done using an API that

retrieves vector data in the form of a GeoJSON file. This file will contain the coordinates

and data for these features. To visualize this data in the form of symbols, shapes, and

lines, we will use Leaflet, a basic mapping library for JavaScript. In terms of

compatibility, we have identified two main options for rendering vector data: Mapbox GL,

a vector tiling library, and Leaflet.VectorGrid, a plugin for Leaflet that handles vector

tiling and styling(5,6). Before selecting the best-suited solution, we have established the

following criteria:

● Compatibility: The solution must be compatible with our current technologies,

such as Leaflet and JavaScript, to ensure the web application remains cohesive

and performs as expected.

● GeoJSON Support: The solution must be able to use GeoJSON and SVG files,

which is crucial for proper rendering of vectors and the overall functionality of the

web application.

16

● Ease of Maintenance: The solution should be easy to maintain and update, which

is important for the longevity and sustainability of the web application once it is

handed over to USGS.

● Environment and community: We want a solution with an active community for

better documentation and support if we encounter any issues.

Now, let's compare Leaflet.VectorGrid and Mapbox GL, both of which are

compatible with Leaflet and JavaScript. These libraries cater to different needs and

have varying levels of complexity, but both are capable of using GeoJSON and SVG

files, which is essential for our project. Developed by Iván Sánchez Ortega,

Leaflet.VectorGrid is a lightweight plugin with a mature codebase, while Mapbox GL,

developed by Mapbox, is a more advanced library(5,6).

Leaflet.VectorGrid

● A lightweight and easy-to-use plugin for displaying vector tiles in Leaflet-based

maps

● Developed by Iván Sánchez Ortega

● Well-established with a relatively mature codebase

● Already being used in our web application

● Easy SVG integration

● Average documentation

Mapbox GL

17

● A more complex library that provides advanced features for creating interactive

maps

● Developed by Mapbox

● First stable release in 2016 but gained popularity due to its versatility and ease of

use

● Contains a plugin called Mapbox.Leaflet that makes both the rendering and

styling using Leaflet compatible

● Difficult SVG integration because it needs to be converted into a data URL in the

form of a JSON

● Good documentation

We have to choose one based on several pros and cons. Here are our

conclusions:

● Compatibility and Cohesiveness: Both Leaflet.VectorGrid and Mapbox GL are

compatible with Leaflet and JavaScript, which are the existing technologies used

in our project. However, Mapbox GL requires a separate plugin called

Mapbox.Leaflet and SVG files to be converted into a data URL(data sent over the

URL instead of an external file), which could reduce cohesiveness and future

compatibility. Leaflet.VectorGrid, on the other hand, is already being used in the

application and has full support for our existing libraries without requiring

modifications, making it a more cohesive choice.

18

● Ability to use GeoJSON files: Both options can handle GeoJSON files, which is

an essential requirement for our project.

● Licensing cost: Leaflet.VectorGrid is an open-source plugin with no licensing

cost, while Mapbox GL is a commercial product that may require a paid license

for certain uses. At this time, we are unsure if a cost will be required since the

code will be open-source. Mapbox's licensing may be free in a free-to-use

application.

● Performance: Mapbox GL is known for better performance when rendering large

datasets, while Leaflet.VectorGrid has some limitations in handling very large

datasets. However, for the scale of our project, either option should suffice.

● User base: Both options have a significant user base, with Mapbox GL being

used by companies like Strava and Airbnb, and Leaflet.VectorGrid being used by

organizations like NASA and the USGS. An advantage of using VectorGrid is that

USGS has already implemented it into our current system.

● Maturity of technology: Mapbox GL is a mature and established technology, with

a long history of development and continuous updates. Leaflet.VectorGrid is a

relatively newer technology but has been actively developed and maintained.

19

Leaflet.VectorGrid Mapbox GL

Compatibility 5 3

Licencing 5 3

Performance 3 5

cost(time) 5 3

User Base 5 4

Total 23 18

Table 2.1

Based on our analysis, we can conclude that both options are suitable for our

project, but Leaflet.VectorGrid has a slight advantage in terms of compatibility and cost,

while Mapbox GL has an advantage in terms of performance and maturity. Ultimately,

we have chosen Leaflet.VectorGrid since it scored much higher in Table 2.1 and has

already been incorporated into our application and has absolute compatibility with other

Leaflet plugins currently in use. In addition, the cost of making adjustments to make

Mapbox viable is just far too much.

20

Figure 2.1
As shown in Table 2.1, we have chosen to continue using Leaflet.VectorGrid over

Mapbox. Looking at Figure 2.1, here is an example of what the polygons on the

planetary bodies will look like once we render the vectors. Figure 2.1 is taken directly

from the GeoSTAC website, as Mars has dummy values to demonstrate the feasibility of

displaying these vectors. Our job will be to continue using this in combination with a

given API to collect GeoJSON files that we can then render onto the map.

III. Search Feature

The inclusion of a database of vector data, and the ability to display this

information, necessitates a method of finding the desired data. For this additional data

to be useful, a user needs to be able to select the vector data that is meaningful to them

and to then be able to query the database to find data that matches the selected criteria.

21

Without this search feature, the only other approach would be to display all the

vector data for a given map by default. This approach would have two primary

problems:

● The first is that querying the database for all available vector data of a given map

and then visualizing all of that data would unnecessarily waste both bandwidth

and CPU processing time. As a result this would be an inefficient system - albeit

one that would provide the desired vector data.

● While this approach would successfully display the desired data, it would also

display all the undesired data as well. The maps produced by this method would

be cluttered and confusing for the users and potentially impede their ability to find

the data relevant to their research.

With this in mind, our approach will be to provide functionality to the user that will

allow them to search the database for specific vector data - this will be done in

conjunction with the necessary UI improvements such as check boxes - to indicate the

specific geologic features that are being looked for (mountains, volcanoes, rivers,

etc…).

There are several features that will need to be possessed by any possible

solutions if they are to provide the necessary search functionality. These are listed

individually in the following paragraphs, along with a brief description:

22

● Speed: A slow response time when using a web application can be a very

frustrating experience, and one that is important to avoid. Given that the

GeoSTAC web application works with maps and imaging, this is doubly true as

those files can already be large and slow to load. Our ideal solution will be to

maintain the current server responsiveness while searching the database for this

additional layer of data.

● Database Compatibility: This project will be working with an existing database of

raster and vector data, accessed through an API. This database retains

information in the GeoJSON format and any search functionality will need to be

compatible with this format.

● Standards Compliance: In addition to working with an existing database of map

information in the GeoJSON format, this search feature will need to be able to

accept queries submitted according to the CQL standard that this project must

adhere to. This standard is a requirement from the sponsor.

● Redundancy: Lastly, as a web application that provides access to scientific data

that is necessary for researchers - it is important that access to this data is

reliable. As a result, it is important to account for any potential outages or server

failures that could result in a partial - or complete - inability to search the

database. Any search function operating on the backend of the web application

23

will need to provide some level of fault tolerance and redundancy so that in the

event of an outage, application users will still be able to access the full data set.

While other search engines that could be built into the backend of an application

do exist, there are no viable alternatives to the use of ElasticSearch. In this case - as

this is an existing web application - a functioning ElasticSearch backend is already in

place, and this means that replacing it unnecessarily would require our team allocate a

great deal of resources to this task. The sponsors of this project have also stated that

they wish for ElasticSearch to continue to be used as the search engine for the

GeoSTAC application. This being said, it is worth discussing in the following section

what ElasticSearch is - both generally and then more specifically - and why it is the

correct solution for this project.

In the broadest sense, ElasticSearch is a search engine and performs the same

job as the engines we are all familiar with; Google, Bing, DuckDuckGo, etc.. This search

engine is meant to sit on the backend of the web application, accessed by users

through an application, see figure 3.1.

Figure 3.1

ElasticSearch is designed to handle a wide range of data - including geo-spatial

data - which is what is of interest for this project. Developed in 2010, ElasticSearch has

been available for over a decade, allowing for wide adoption and community support to

24

develop. The foundation of ElasticSearch is the Lucene search engine, developed and

maintained by the Apache Foundation [7]. Built on top of the Lucene engine are a

number of additional features designed to improve scalability, responsiveness, fault

tolerance, and redundancy.

● ElasticSearch utilizes a “word-level inverted index”. An “inverted index” is the

most widely used structure for a full-text search engine such as Lucene, and is

generally considered to be one of the fastest ways in which to retrieve data [8].

An “inverted index” is a data structure in which any stored document is

scanned and the exact location of this document - or elements of that document -

are stored in an index file.

In the case of a “word-level” inverted index, each uploaded document is

scanned and each individual word of the document is stored in the index, along

with all of the locations of that word within the database. This allows for rapid

searching and retrieval of the database.

● A solution requirement is for easy compatibility with the current database and for

easy API access. ElasticSearch has a number of different APIs available that

allow for a wide variety of queries in order to monitor not only the performance of

the engine itself but to also access the data it has indexed.

ElasticSearch has also implemented structures specifically to handle

geo-spatial data [9]. The GeoShapes data structure, for example, allows the

engine to index not only rasterized map data - meaning simple, individual points

25

on the map - but also shapes like the ones created by the vector data being

added to the GeoSTAC application.

● Two features built into ElasticSearch are “nodes” and “shards” [10]. Nodes are

effectively the individual servers on which ElasticSearch is running. Within each

node there will be one or more “shards”, which are individual instances of

ElasticSearch running on those servers or “nodes”. Running multiple shards - or

instances of ElasticSearch - allows for improved server responsiveness since

multiple simultaneous requests to the search engine can be split between the

shards allowing them to work in parallel. To provide redundancy, an

update-to-date copy of each shard - known as a “replica” shard - is stored on a

different node from the “primary” shard. In the event that a node goes offline, all

data can still be accessed as the replica shard will take the place of the primary

shard that is now unavailable. This structure allows for ElasticSearch to have

scalability by adding additional servers if needed, and to be fault tolerant by

providing redundancy for each shard should one of those servers fail.

In our case, the approach is predetermined - we will be querying the vector data

using an ElasticSearch backend as that is a request of the sponsors, and the backend

is already in place and functioning with the raster data currently available on the

GeoSTAC application. The analysis of ElasticSearch by our team however supports the

request by our sponsors to utilize it. As has been shown in the prior sections, an

ElasticSearch backend is capable of providing all the necessary qualities of speed,

26

compatibility, compliance, and fault tolerance. Additionally, the majority of the

frame-work for querying the database through ElasticSearch is already in place, our

team expects that we will only need to augment the current application design to handle

queries of the more complicated vector data.

In order to validate our expectations that ElasticSearch will be up to the task of

handling both raster and vector data, our team plans to test this by writing simple

queries - using the OGC Features - API CQL specification - and to see if results are

returned.

Technology Integration

Now that all of the technological challenges have been addressed, we need to

address how to integrate all of our chosen solutions together, see figure 4.1 for a visual

representation of how the different technologies will be workin with each other. Firstly,

it’s important to note all of the technological solutions depend on the vector API. Also of

all of the technological challenges, only vector rendering and vector styling will be

working directly with each other.

27

Figure 4.1

The vectors will be processed using data from the vector API, processed into

GeoJSON data and then rendered to the Leaflet map. From here the GeoJSON data

will begin to be stylized by Leaflet.SLD scanning for any new vectors, referring to that

GeoJSON’s data, and then visually styling the vectors according to their associated

features.

The search feature will integrate with this process solely through the vector API.

A GeoSTAC user will select the features they are interested in (mountains, lakes, rivers,

etc…) and then pass that information to the ElasticSearch backend. ElasticSearch will

then query its Index to locate the desired data. After the data has been found,

ElasticSearch will retrieve the requested vector data and pass it into the vector API for

rendering and eventual styling.

28

Conclusion

The features developed by GeoKings will ultimately allow for a more accurate,

user-friendly experience for those looking to analyze spatial data. Using the tools

provided by the JavaScript library Leaflet, we are able to display vector data to the

GeoSTAC web map in addition to the raster data as well as stylize the data in a way

that is understandable to the users. By adding updated searching functionality to

ElasticSearch to support the implementation of visualized vector data, having access to

spatial data will now become even more accessible. Moving forward, it is our goal to

deliver on these topics through diligent communication and effort, providing our client

with the best product we have to offer.

29

References

1. An open-source JavaScript library for interactive maps. Leaflet. (n.d.).
Retrieved April 4, 2023, from https://leafletjs.com/

2. Geojson. GeoJSON. (n.d.). Retrieved April 4, 2023, from
https://geojson.org/

3. SVG: Scalable Vector Graphics. MDN. (n.d.). Retrieved April 4, 2023, from
https://developer.mozilla.org/en-US/docs/Web/SVG

4. Styled layer descriptor. Open Geospatial Consortium. (2023, February
21). Retrieved April 4, 2023, from https://www.ogc.org/standard/sld/

5. API reference: Mapbox GL JS. Mapbox. (n.d.). Retrieved March 23, 2023,
from https://docs.mapbox.com/mapbox-gl-js/api/

6. Leaflet. (n.d.). Leaflet/Leaflet.VectorGrid: Display gridded vector data
(sliced geojson or protobuf vector tiles) in leaflet 1.0.0. GitHub. Retrieved
March 23, 2023, from https://github.com/Leaflet/Leaflet.VectorGrid

7. What is ElasticSearch? Elastic. (n.d.). Retrieved March 22, 2023, from
https://www.elastic.co/what-is/elasticsearch

8. GeeksforGeeks. (2023, March 13). Inverted index. GeeksforGeeks.
Retrieved March 22, 2023, from
https://www.geeksforgeeks.org/inverted-index/

9. GEOSHAPE field type: ElasticSearch Guide [8.6]. Elastic. (n.d.). Retrieved
March 22, 2023, from
https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-shape.
html

10.George Bridgeman. (2021). What are ElasticSearch shards? Why do they
matter? ElasticSearch cluster architecture explained. Retrieved March 22,
2023, from https://www.youtube.com/watch?v=NxpZyQVO0K4.

30

https://www.ogc.org/standard/sld/
https://www.youtube.com/watch?v=NxpZyQVO0K4

